Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Chaos Solitons Fractals ; 157: 111927, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-2322680

ABSTRACT

Multiple strains of the SARS-CoV-2 have arisen and jointly influence the trajectory of the coronavirus disease (COVID-19) pandemic. However, current models rarely account for this multi-strain dynamics and their different transmission rate and response to vaccines. We propose a new mathematical model that accounts for two virus variants and the deployment of a vaccination program. To demonstrate utility, we applied the model to determine the control reproduction number ( R c ) and the per day infection, death and recovery rates of each strain in the US pandemic. The model dynamics predicted the rise of the alpha variant and shed light on potential impact of the delta variant in 2021. We obtained the minimum percentage of fully vaccinated individuals to reduce the spread of the variants in combination with other intervention strategies to deaccelerate the rise of a multi-strain pandemic.

2.
Front Cell Infect Microbiol ; 12: 933190, 2022.
Article in English | MEDLINE | ID: covidwho-1987475

ABSTRACT

Background: Disparate COVID-19 outcomes have been observed between Hispanic, non-Hispanic Black, and White patients. The underlying causes for these disparities are not fully understood. Methods: This was a retrospective study utilizing electronic medical record data from five hospitals within a single academic health system based in New York City. Multivariable logistic regression models were used to identify demographic, clinical, and lab values associated with in-hospital mortality. Results: A total of 3,086 adult patients with self-reported race/ethnicity information presenting to the emergency department and hospitalized with COVID-19 up to April 13, 2020, were included in this study. While older age (multivariable odds ratio (OR) 1.06, 95% CI 1.05-1.07) and baseline hypoxia (multivariable OR 2.71, 95% CI 2.17-3.36) were associated with increased mortality overall and across all races/ethnicities, non-Hispanic Black (median age 67, interquartile range (IQR) 58-76) and Hispanic (median age 63, IQR 50-74) patients were younger and had different comorbidity profiles as compared to non-Hispanic White patients (median age 73, IQR 62-84; p < 0.05 for both comparisons). Among inflammatory markers associated with COVID-19 mortality, there was a significant interaction between the non-Hispanic Black population and interleukin-1-beta (interaction p-value 0.04). Conclusions: This analysis of a multiethnic cohort highlights the need for inclusion and consideration of diverse populations in ongoing COVID-19 trials targeting inflammatory cytokines.


Subject(s)
COVID-19 , Adult , Black or African American , Aged , Humans , Middle Aged , Retrospective Studies , SARS-CoV-2 , White People
3.
Commun Med (Lond) ; 1: 3, 2021.
Article in English | MEDLINE | ID: covidwho-1860405

ABSTRACT

Background: Sex has consistently been shown to affect COVID-19 mortality, but it remains unclear how each sex's clinical outcome may be distinctively shaped by risk factors. Methods: We studied a primary cohort of 4930 patients hospitalized with COVID-19 in a single healthcare system in New York City from the start of the pandemic till August 5, 2020, and a validation cohort of 1645 patients hospitalized with COVID-19 in the same healthcare system from August 5, 2020, to January 13, 2021. Results: Here we show that male sex was independently associated with in-hospital mortality, intubation, and ICU care after adjusting for demographics and comorbidities. Using interaction analysis and sex-stratified models, we found that hypoxia interacted with sex to preferentially increase women's mortality risk while obesity interacted with sex to preferentially increase women's risk of intubation and intensive care in our primary cohort. In the validation cohort, we observed that male sex remained an independent risk factor for mortality, but sex-specific interactions were not replicated. Conclusions: We conducted a comprehensive sex-stratified analysis of a large cohort of hospitalized COVID-19 patients, highlighting clinical factors that may contribute to sex differences in the outcome of COVID-19.

4.
Chaos, solitons, and fractals ; 2022.
Article in English | EuropePMC | ID: covidwho-1688433

ABSTRACT

Multiple strains of the SARS-CoV-2 have arisen and jointly influence the trajectory of the coronavirus disease (COVID-19) pandemic. However, current models rarely account for this multi-strain dynamics and their different transmission rate and response to vaccines. We propose a new mathematical model that accounts for two virus variants and the deployment of a vaccination program. To demonstrate utility, we applied the model to determine the control reproduction number

5.
Viruses ; 14(1)2022 01 16.
Article in English | MEDLINE | ID: covidwho-1624979

ABSTRACT

In a population with ongoing vaccination, the trajectory of a pandemic is determined by how the virus spreads in unvaccinated and vaccinated individuals that exhibit distinct transmission dynamics based on different levels of natural and vaccine-induced immunity. We developed a mathematical model that considers both subpopulations and immunity parameters, including vaccination rates, vaccine effectiveness, and a gradual loss of protection. The model forecasted the spread of the SARS-CoV-2 delta variant in the US under varied transmission and vaccination rates. We further obtained the control reproduction number and conducted sensitivity analyses to determine how each parameter may affect virus transmission. Although our model has several limitations, the number of infected individuals was shown to be a magnitude greater (~10×) in the unvaccinated subpopulation compared to the vaccinated subpopulation. Our results show that a combination of strengthening vaccine-induced immunity and preventative behavioral measures like face mask-wearing and contact tracing will likely be required to deaccelerate the spread of infectious SARS-CoV-2 variants.


Subject(s)
COVID-19/transmission , Epidemiological Models , SARS-CoV-2/physiology , Vaccination , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Vaccines/immunology , Humans , SARS-CoV-2/immunology , United States/epidemiology , Vaccination/statistics & numerical data , Vaccine Efficacy
6.
Sci Rep ; 11(1): 13913, 2021 07 06.
Article in English | MEDLINE | ID: covidwho-1298850

ABSTRACT

The global surge in COVID-19 cases underscores the need for fast, scalable, and reliable testing. Current COVID-19 diagnostic tests are limited by turnaround time, limited availability, or occasional false findings. Here, we developed a machine learning-based framework for predicting individual COVID-19 positive diagnosis relying only on readily-available baseline data, including patient demographics, comorbidities, and common lab values. Leveraging a cohort of 31,739 adults within an academic health system, we trained and tested multiple types of machine learning models, achieving an area under the curve of 0.75. Feature importance analyses highlighted serum calcium levels, temperature, age, lymphocyte count, smoking, hemoglobin levels, aspartate aminotransferase levels, and oxygen saturation as key predictors. Additionally, we developed a single decision tree model that provided an operable method for stratifying sub-populations. Overall, this study provides a proof-of-concept that COVID-19 diagnosis prediction models can be developed using only baseline data. The resulting prediction can complement existing tests to enhance screening and pandemic containment workflows.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Demography , SARS-CoV-2/pathogenicity , Adult , COVID-19/epidemiology , COVID-19 Testing/methods , Cohort Studies , Demography/methods , Humans , Machine Learning , Prognosis , ROC Curve
7.
iScience ; 24(6): 102550, 2021 Jun 25.
Article in English | MEDLINE | ID: covidwho-1253072

ABSTRACT

While several genes and clinical traits have been associated with higher risk of severe coronavirus disease 2019 (COVID-19), how host genetic variants may interact with these parameters and contribute to severe disease is still unclear. Herein, we performed phenome-wide association study, tissue and immune-cell-specific expression quantitative trait locus (eQTL)/splicing quantitative trait locus, and colocalization analyses for genetic risk loci suggestively associated with severe COVID-19 with respiratory failure. Thirteen phenotypes/traits were associated with the severe COVID-19-associated loci at the genome-wide significance threshold, including monocyte counts, fat metabolism traits, and fibrotic idiopathic interstitial pneumonia. In addition, we identified tissue and immune subtype-specific eQTL associations affecting 48 genes, including several ones that may directly impact host immune responses, colocalized with the severe COVID-19 genome-wide association study associations, and showed altered expression in single-cell transcriptomes. Collectively, our work demonstrates that host genetic variations associated with multiple genes and traits show genetic pleiotropy with severe COVID-19 and may inform disease etiology.

SELECTION OF CITATIONS
SEARCH DETAIL